(-3y^2+y-2)+(5y^2+6y+7=)

Simple and best practice solution for (-3y^2+y-2)+(5y^2+6y+7=) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (-3y^2+y-2)+(5y^2+6y+7=) equation:



(-3y^2+y-2)+(5y^2+6y+7=)
We move all terms to the left:
(-3y^2+y-2)+(5y^2+6y+7-())=0
We get rid of parentheses
-3y^2+y+(5y^2+6y+7-())-2=0
We calculate terms in parentheses: +(5y^2+6y+7-()), so:
5y^2+6y+7-()
We add all the numbers together, and all the variables
5y^2+6y
Back to the equation:
+(5y^2+6y)
We get rid of parentheses
-3y^2+5y^2+y+6y-2=0
We add all the numbers together, and all the variables
2y^2+7y-2=0
a = 2; b = 7; c = -2;
Δ = b2-4ac
Δ = 72-4·2·(-2)
Δ = 65
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-\sqrt{65}}{2*2}=\frac{-7-\sqrt{65}}{4} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+\sqrt{65}}{2*2}=\frac{-7+\sqrt{65}}{4} $

See similar equations:

| 5/9+a=1/3 | | 1/3=a+5/9 | | (-3y^2+y-2)=(5y^2+6y+7) | | 2z-97+z/2=2z-85 | | x/8+x=180 | | 4+3x=6x-8+3x012 | | 0.25n=2 | | .02xX=12500. | | 2a-4(6-4a)=13a-5-(a+3) | | (1+c^2)^2-5c=0 | | 5x-2+4x=34 | | 1/4+5=2x-9 | | 7a-8=2a+a+4 | | 2h=20 | | 3^x+4=2^1-3x | | 7(3w+1)/2=-10 | | 5(×+3)+4x-5=4-2x | | 20000-1200y=25000-1800y | | -2x+5=5+3x | | 2a+7+24=a-5 | | -11-5a=30a+3 | | 10(s-3)=-10 | | 4n-8=n-6 | | 20•x=160 | | -5(4t-4)+8t=5t-2 | | x=(180)4x | | 40+x=200 | | -4x+2=-7x-25 | | 8d-9d=18 | | x=180÷4x | | 15.16=4n | | 4x+28=32+3x |

Equations solver categories